Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 253(Pt 6): 127268, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37813221

RESUMEN

Soy protein isolate (SPI) has received widespread attention of the biomedical research community primarily due to its good biocompatibility, biodegradability, high availability and low cost. Herein, glutaraldehyde cross-linked microporous sponge-like SPI scaffolds were prepared using the cryogelation technique for tissue engineering applications. The prepared SPI scaffolds possess an interconnected porous structure with approximately 90% porosity and an average pore size in the range of 45-92 µm. The morphology, porosity, swelling capacity and degradation rate of the cryogels were found to be dependent on the concentration of polymer to crosslinking agent. All cryogels were found to be elastic and able to maintain physical integrity even after being compressed to one-fifth of their original length during cyclic compression analysis. These cryogels showed excellent mechanical properties, immediate water-triggered shape restoration and absorption speed. Furthermore, cryogels outperformed cotton and gauze in terms of blood clotting and blood cell adherence. The in vitro and in vivo studies demonstrated the potency of SPI scaffolds for skin tissue engineering applications. Our findings showed that crosslinking with glutaraldehyde had no detrimental effects on cell viability. In addition, an in vivo wound healing study in rats validated them as good potential wound dressing materials.


Asunto(s)
Criogeles , Proteínas de Soja , Ratas , Animales , Criogeles/química , Glutaral , Ingeniería de Tejidos/métodos , Vendajes , Andamios del Tejido/química , Porosidad
2.
J Biomater Sci Polym Ed ; 33(17): 2220-2248, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35820154

RESUMEN

Bone tissue engineering is an emerging technology that has been developed in recent years to address bone abnormalities by repairing, regenerating and replacing damaged/injured tissues. In present work, we report the fabrication and characterization of porous luffa-based composite scaffolds composed of Luffa cylindrica (sponge gourd) powder (LC)/hydroxyapatite (HA), psyllium husk (PH) and gelatin (G) in various combinations (w/v) i.e. 3% LC, 5% LC and control (C) (without luffa powder) by using freeze-drying method. The structural stability of the scaffolds was obtained after chemically crosslinking them with glutaraldehyde (GTA), which was identified via scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The hydrophilic behavior of the samples was quantified by water contact angle measurements. The average pore size of the scaffolds was observed in a range of 20-240 µm. As per the obtained data, the apparent and effective porosities were estimated as ∼57.08 ± 4.38%, ∼50.58 ± 4.09%, ∼59.45 ± 1.60% and 51.37 ± 3.36%, 47.94 ± 4.57% and 53.09 ± 5.45% for 3% LC, 5% LC and control (C) scaffolds, respectively. The scaffolds were found to be noticeably stable for 50 days at 37 °C in a lysozyme solution. The liquid retention capacity of the scaffolds revealed that the luffa-based scaffolds gained lower retention capacity compared to the control (C) scaffold; indicating an increase in scaffold stiffness due to the addition of luffa. Compressive strength study demonstrated that the mechanical stability of the fabricated luffa-based scaffolds got increased significantly from ∼1.5 to ∼9.5 MPa, which is comparable to that of trabecular bone. In addition, proliferation and viability analysis of MG-63 osteoblast-like cells revealed a significant level of cellular compatibility i.e. approaching ∼64% proliferation by 6th day in vitro compared to control. Thus, the obtained results demonstrate that the fabricated novel luffa-based scaffolds exhibit good cytocompatibility, remarkable porosity and excellent mechanical strength comparable to native human bone. Therefore, we anticipate that the developed luffa-based scaffolds could be a promising candidate for bone tissue engineering applications.


Asunto(s)
Luffa , Psyllium , Humanos , Ingeniería de Tejidos/métodos , Gelatina/química , Durapatita/química , Andamios del Tejido/química , Polvos , Porosidad , Espectroscopía Infrarroja por Transformada de Fourier , Proliferación Celular
3.
ACS Appl Mater Interfaces ; 14(12): 14033-14048, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35312269

RESUMEN

In this work, polyvinyl alcohol (PVA)- and soy protein isolate (SPI)-based scaffolds were prepared by physical cross-linking using the freeze-thaw method. The PVA/SPI ratio was varied to examine the individual effects of the two constituents. The physicochemical properties of the fabricated scaffolds were analyzed through Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, thermogravimetric analysis, and differential scanning calorimetry. The SPI concentration significantly affected the properties of scaffolds, such as the extent of gelation (%), pore size, porosity, degradation, swelling, and surface wettability. The in vitro degradation of fabricated hydrogels was evaluated in phosphate-buffered saline and lysozyme solution for a duration of 14 days. The in vitro compatibility of prepared hydrogels was evaluated by the MTT assay with NIH-3T3 cells (fibroblast). The water vapor transmission rate (WVTR) assays showed that all hydrogels possessed WVTR values in the range of 2000-2500 g m-2 day-1, which is generally recommended for ideal wound dressing. Overall, the obtained results reveal that the fabricated scaffolds have excellent biocompatibility, mechanical strength, porosity, stability, and degradation rate and thus carry enormous potential for tissue engineering applications. Furthermore, a full-thickness wound healing study performed in rats supported them as a promising wound dressing material.


Asunto(s)
Alcohol Polivinílico , Proteínas de Soja , Animales , Vendajes , Hidrogeles/química , Ratones , Alcohol Polivinílico/química , Ratas , Ingeniería de Tejidos/métodos
4.
Appl Biochem Biotechnol ; 194(6): 2831-2855, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35257316

RESUMEN

Chronic elevation of sugar and oxidative stress generally results in development of advanced glycation end products (AGEs) in diabetic individuals. Accumulation of AGEs in an individual can give rise to the activation of several pathways that will ultimately lead to various complications. Such AGEs can also be prepared in an in vitro environment. For an in vitro preparation of advanced glycation end products (AGEs), proteins, lipids, or nucleic acids are generally required to be incubated with reducing sugars at a physiological temperature or higher depending upon the protocol optimized for its preparation. Certain other factors are also optimized and added to the buffer to hasten its preparation or alter the properties of prepared AGEs. Through this review, we intend to highlight the various studies related to the experimental procedures for the preparation of different types of AGEs. In addition, we present the comparative study of methodologies optimized for the preparation of AGEs.


Asunto(s)
Diabetes Mellitus , Productos Finales de Glicación Avanzada , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Estrés Oxidativo , Receptor para Productos Finales de Glicación Avanzada/metabolismo
5.
Carbohydr Polym ; 274: 118617, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34702448

RESUMEN

The chitosan-folate conjugate was synthesized initially and confirmed by FTIR and NMR spectroscopic studies. Following, docetaxel (DXL) loaded non-targeted, single receptor and dual receptor (folate and EGFR) targeted chitosan nanoparticles were prepared and their shape, particle size, zeta-potential, surface morphology and texture were screened by SEM, TEM, AFM analyses. Surface chemistry analysis by XPS indeed confirmed the successful conjugation of folate and cetuximab on the targeted formulations. In-vitro analysis of dual-targeted chitosan nanoparticles has revealed their superior cytotoxicity against A-549 cells. The IC50 of dual receptor-targeted chitosan NP was almost 34 times lower than DXL control. In-vivo pharmacokinetic study on Wistar rats has demonstrated improved relative bioavailability of all NP in comparison to DXL control. The results illustrated that EGFR and folate dual targeted NP enhanced the cytotoxicity of DXL towards A-549 lung cancer cells and substantially improved DXL pharmacokinetics in rats.


Asunto(s)
Quitosano/química , Docetaxel/administración & dosificación , Portadores de Fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas/química , Células A549 , Animales , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Humanos , Ratas , Ratas Wistar
6.
Biomed Mater ; 16(6)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34517359

RESUMEN

The rationale behind the success of nickel free or with extremely low nickel austenitic high manganese and nitrogen stabilized stainless steels is adverse influences of nickel ion on human body. Replacement of nickel by nitrogen and manganese provides a stable microstructure and facilitates better biocompatibility in respect of the conventional 316L austenitic stainless steel (316L SS). In this investigation, biocompatibility of the high-manganese and nitrogen stabilized (Fe-18Cr-22Mn-0.65N) austenitic stainless steel was studied and found highly promising.In vitrocell culture and cell proliferation (MTT) assays were performed on this stainless steel and assessed in respect of the 316L SS. Both the steels exhibited similar cell growth behavior. Furthermore, an enhancement was observed in cell proliferation on the Fe-18Cr-22Mn-0.65N SS after surface modification by ultrasonic shot peening (USP). The mean percent proliferation of the MG-63 cells increased from ≈88% for Un-USP to 98% and 105% for USP 3-2 and USP 2-2 samples, respectively for 5 d of incubation. Interestingly,in vivoanimal study performed in rabbits for 3 and 6 weeks showed callus formation and sign of union without any allergic reaction.


Asunto(s)
Materiales Biocompatibles , Aleaciones Dentales , Prótesis e Implantes , Acero Inoxidable , Materiales Biocompatibles/química , Materiales Biocompatibles/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Aleaciones Dentales/química , Aleaciones Dentales/toxicidad , Humanos , Manganeso/química , Ensayo de Materiales , Nitrógeno/química , Acero Inoxidable/química , Acero Inoxidable/toxicidad
7.
Cells Tissues Organs ; 210(3): 173-194, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34252899

RESUMEN

Tissue engineering is a promising approach to overcome the severe worldwide shortage of healthy donor corneas. In this work, we have developed a silk-gelatin composite scaffold using electrospinning and permeation techniques to achieve the properties comparable to cornea analog. In particular, we present the fabrication and comparative evaluation of the novel gelatin sheets consisting of silk fibroin nanofibers, which are prepared using silk fibroin (SF) (in formic acid) and SF (in aqueous) electrospun scaffolds, for its suitability as corneal stromal analogs. All the fabricated samples were treated with ethanol vapor (T) to physically crosslink the silk nanofibers. Micro/nano-scale features of the fabricated scaffolds were analyzed using scanning electron microscopy micrographs. Fourier transform infrared spectroscopy revealed characteristic peaks of polymeric functional groups and modifications upon ethanol vapor treatment. Transparency of the scaffolds was determined using UV-visible spectra. Among all the fabricated samples, the gelatin-permeated SF (in formic acid; T) scaffold showed the highest level of transparency, i.e., 77.75 ± 2.3%, which is similar to that of the native cornea (∼70%-90% [variable with age group]) with healthy acute vision. Contact angle of the samples was studied to estimate the hydrophilicity of the scaffolds. All the scaffolds except non-treated SF (in aqueous; NT) were found to be significantly stable up to 14 days when incubated in phosphate buffered saline at 37°C. Treated samples showed significantly better stability, both physically and microscopically, in comparison to nontreated samples. Proliferation and viability assays of rabbit corneal fibroblast cells (SIRC) and mouse fibroblast cells (L929 RFP) when cultured on fabricated scaffolds revealed remarkable cellular compatibility with gelatin-permeated SF (in formic acid; T) scaffolds compared to SF (in aqueous; T). Unlike other reports in the existing literature, this work presents the design and development of a nanofibrous silk-gelatin composite that exhibits acceptable transparency, cellular biocompatibility, as well as improved mechanical stability comparable to that of native cornea. Therefore, we anticipate that the fabricated novel scaffold is likely to be a good candidate for corneal tissue construct. Moreover, among the fabricated scaffolds, the outcomes depict gelatin-permeated SF (in formic acid; T) composite scaffold to be a better candidate as a corneal stromal analog that carries properties of both the silk and gelatin, i.e., optimal transparency, better stability, and enhanced cytocompatibility.


Asunto(s)
Fibroínas , Nanofibras , Animales , Córnea , Gelatina , Ratones , Conejos , Ingeniería de Tejidos , Andamios del Tejido
8.
J Biomater Appl ; 35(9): 1132-1142, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33377809

RESUMEN

The primary goal of this study is to highlight the rheological and mechanical properties of a new blend composed of naturally-derived hydrogel materials- psyllium husk (PH) and gelatin (G) for its potential use in three-dimensional (3D) printing technology. The mixtures were prepared at various weight ratios of 100PH, 75PH + 25G and 50PH + 50G. A suitable selection of the printable ink was made based on the preliminary screening steps of manual filament drop test and layer stacking by 3D printing. Printing of the common features such as hexagon and square grids helped evaluating shape fidelity of the chosen ink. Although 50PH + 50G blend was found meeting most of the criteria for an ideal 3D printable ink, rheological and mechanical characterizations have been performed for all the ratios of polymeric blends. This study documents the correlation between various factors of rheology that should be taken into account while categorizing any biomaterial as a printable ink. Yield stress was measured as 18.59 ± 4.21 Pa, 268.74 ± 13.56 Pa and 109.16 ± 9.85 Pa for 50PH + 50G, 75PH + 25G and 100PH, respectively. Similarly, consistency index (K) and flow index (n) were calculated using the power law equation and found as 49.303 ± 4.17, 530.59 ± 10.92, 291.82 ± 10.53 and 0.275 ± 0.04, 0.05 ± 0.005, 0.284 ± 0.04 for 50PH + 50G, 75PH + 25G and 100PH, respectively. The loss modulus (G″) was observed dominating over storage modulus (G') for 50PH + 50G, that depicts its liquid-like property; whereas storage modulus (G') was found dominating in case of 75PH + 25G and 100PH, indicating their solid-like characteristics. In addition, the loss tangent value (tan δ) of 50PH + 50G was observed exceeding unity (1.05), supporting its plastic behavior, unlike 75PH + 25G (0.5) and 100PH (0.33) whose loss tangent values were estimated less than unity revealing their elastic behavior. Also, 50PH + 50G was found to have the highest mechanical strength amongst the three blends with a Young's modulus of 9.170 ± 0.0881 kPa.


Asunto(s)
Gelatina/química , Tinta , Psyllium/química , Módulo de Elasticidad , Hidrogeles/química , Polisacáridos/química , Impresión Tridimensional , Reología , Viscosidad
9.
Int J Biol Macromol ; 160: 112-127, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32422270

RESUMEN

Biocompatible soy protein isolate/silk fibroin (SPI/SF) nanofibrous scaffolds were successfully fabricated through electrospinning a novel protein blend SPI/SF. Prepared nanofibers were treated with ethanol vapor to obtain an improved water-stable structure. Fabricated scaffolds were characterized through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), UV-VIS spectrophotometry and image analysis. The mean diameters of SPI/SF electrospun fibers were observed ranging between 71 and 160 nm. The scaffolds were found significantly stable for a prolong duration at the room temperature as well as at 37 °C, when placed in phosphate buffered saline, nutrient medium, and lysozyme-containing solution. The potential of fabricated scaffolds for skin tissue regeneration was evaluated by in vitro culturing of standard cell lines i.e., fibroblast cells (L929-RFP (red fluorescent protein) and NIH-3T3) and melanocytes (B16F10). The outcomes revealed that all the fabricated nanofibrous scaffolds were non-toxic towards normal mammalian cells. In addition, healing of full-thickness wound in rats within 14 days after treatment with a nanofibrous scaffold demonstrated its suitability as a potential wound dressing material. Interestingly, we found that nanofibers induced a noticeable reduction in the proliferation rate of B16F10 melanoma cells.


Asunto(s)
Fibroínas/farmacología , Nanofibras/administración & dosificación , Seda/química , Piel/efectos de los fármacos , Proteínas de Soja/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Vendajes , Bombyx/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Masculino , Mamíferos , Melanocitos/efectos de los fármacos , Ratones , Células 3T3 NIH , Ratas , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido
10.
Cytotechnology ; 71(1): 287-303, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30603924

RESUMEN

In the present study, we propose a platform for topical wound dressing material using a polydimethylsiloxane (PDMS) scaffold in order to enhance the skin healing process. In vitro co-culture assessment of epidermal-origin mouse B16-F10 melanocyte cells and mouse L929 fibroblast cells in three-dimensional polymeric scaffolds has been carried out towards developing bio-stable, interconnected, highly macroporous, PDMS based tissue-engineered scaffolds, using the salt leaching method. To determine a suitable ratio of salt to PDMS pre-polymer in the scaffold, two different samples with ratios 2:1 and 3:1 [w/w], were fabricated. Effective pore sizes of both scaffolds were observed to lie in the desirable range of 152-165 µm. In addition, scaffolds were pre-coated with collagen and investigated as a podium for culturing the chosen cells (fibroblast and melanocyte cells). Experimental results demonstrate not only a high proliferative potential of the skin tissue-specific cells within the fabricated PDMS based scaffolds but also confirm the presence of several other essential attributes such as high interconnectivity, optimum porosity, excellent mechanical strength, gaseous permeability, promising cell compatibility, water absorption capability and desired surface wettability. Therefore, scaffolds facilitate a high degree of cellular adhesion while providing a microenvironment necessary for optimal cellular infiltration and viability. Thus, the outcomes suggest that PDMS based macroporous scaffold can be used as a potential candidate for skin dressing material. In addition, the fabricated PDMS scaffolds may also be exploited for a plethora of other applications in tissue engineering and drug delivery.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...